56. Shi‡*.Q, Fan‡. B, Cao‡. X, Sikdar. D, Huang. Y, Yin. J, Lu. Y, Thang. SH, Cheng. W, Plasmene Nanosheets Assembled from “Plasmonic Molecules”, Nanoscale Horizons. Accepted.
55. Wang, R., Mao, G., Chu, D., Nasiri, N., Wang, Y., Bilek, M., . . . Cheng, W. (2025). Wet chemically produced nanomaterials for soft wearable biosensors. Nanoscale Horizons. doi:10.1039/d5nh00048c
54. Yin, J., Lees, J. G., Gong, S., Nguyen, J. T., Phang, R. J., Shi, Q., . . . Cheng, W. (2025). Real-time electro-mechanical profiling of dynamically beating human cardiac organoids by coupling resistive skins with microelectrode arrays. Biosensors and Bioelectronics, 267. doi:10.1016/j.bios.2024.116752
53. Huang, Y., Shi, Q. *, Liu, S., & Cheng, W. (2025). Flexible Leaf-Like Fuel Cell From Plasmonic Janus Nanosheet. Advanced Functional Materials. doi:10.1002/adfm.202423869
52. Huang, Y., Shi, Q. *, & Cheng, W. (2024). A Rootless Duckweed-Inspired Flexible Artificial Leaf from Plasmonic Photocatalysts. ACS Nano, 18(42), 29214-29222. doi:10.1021/acsnano.4c11435
51. Pizzi, D., Nandakumar, A., Morrow, J. P., Humphries, J., Siddiqui, G., Creek, D. J., . . . Kempe, K. (2024). Influence of chirality on protein corona formation of low-fouling chiral poly(2-oxazoline) coated nanoparticles. European Polymer Journal, 210. doi:10.1016/j.eurpolymj.2024.112964
50. Gong, S., Zhang, X., Nguyen, X. A., Shi, Q., Lin, F., Chauhan, S., . . . Cheng, W. (2023). Hierarchically resistive skins as specific and multimetric on-throat wearable biosensors. Nature Nanotechnology, 18(8), 889-897. doi:10.1038/s41565-023-01383-6
49. Shi, Q., Dong, D., Gervinskas, G., Lin, H., Sikdar, D., Jia, B., . . . Cheng, W. (2023). Soft Plasmene Helical Nanostructures. Advanced Materials Technologies, 8(9). doi:10.1002/admt.202201866
48. Yong, Z., Gong, S., Chesman, A. S. R., Shi, Q., Yap, L. W., Hora, Y., . . . Cheng, W. (2023). Conformal coating of CdS onto flexible enokitake-like standing gold nanowire arrays for omnidirectional low-light-intensity photocatalysis. Nano Energy, 108. doi:10.1016/j.nanoen.2023.108227
47. Lu, Y., Yong, Z., Gong, S., Shi, Q., Lin, F., Zhai, Q., . . . Cheng, W. (2023). Pd-conformally coated, one-end-embedded gold nanowire percolation network for intrinsically stretchable, epidermal tattoo fuel cell. Biosensors and Bioelectronics, 221. doi:10.1016/j.bios.2022.114924
46. Lyu, Q., Gong, S., Lees, J. G., Yin, J., Yap, L. W., Kong, A. M., . . . Cheng, W. (2022). A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly. Nature Communications, 13(1). doi:10.1038/s41467-022-34860-y
45. Yong, Z., Yap, L. W., Shi, Q., Chesman, A. S. R., Chen, E., Fu, R., & Cheng, W. (2022). Omnidirectional Hydrogen Generation Based on a Flexible Black Gold Nanotube Array. ACS Nano, 16(9), 14963-14972. doi:10.1021/acsnano.2c05933
44. Liu, Y., Perera, T., Shi, Q., Yong, Z., Mallawaarachchi, S., Fan, B., . . . Cheng, W. (2022). Thermoresponsive chiral plasmonic nanoparticles. Nanoscale, 14(11), 4292-4303. doi:10.1039/d1nr08343k
43. Shi, Q., Yong, Z., Uddin, M. H., Fu, R., Sikdar, D., Yap, L. W., . . . Cheng, W. (2022). Cell Sheet-Like Soft Nanoreactor Arrays. Advanced Materials, 34(5). doi:10.1002/adma.202105630
42. Shi, Q., Fu, R., Sikdar, D., Perera, T., Chesman, A. S. R., Yong, Z., . . . Cheng, W. (2021). Two-Dimensional Nanoassemblies from Plasmonic Matryoshka Nanoframes. Journal of Physical Chemistry C, 125(50), 27753-27762. doi:10.1021/acs.jpcc.1c07742
41. Fu, R., Liu, S., Shi, Q., Lu, Y., Yong, Z., & Cheng, W. (2021). Active strain engineering of soft plasmene nanosheets by thermoresponsive hydrogels. Journal of Materials Chemistry C, 9(37), 12720-12726. doi:10.1039/d1tc02709c
40. Yong, Z., Yap, L. W., Fu, R., Shi, Q., Guo, Z., & Cheng, W. (2021). Seagrass-inspired design of soft photocatalytic sheets based on hydrogel-integrated free-standing 2D nanoassemblies of multifunctional nanohexagons. Materials Horizons, 8(9), 2533-2540. doi:10.1039/d1mh00753j
39. Yong, Z., Shi, Q. *, Fu, R., & Cheng, W. (2021). Fine-Tuning Au@Pd Nanocrystals for Maximum Plasmon-Enhanced Catalysis. Advanced Materials Interfaces, 8(3). doi:10.1002/admi.202001686
38. Fu, R., Gómez, D. E., Shi, Q., Yap, L. W., Lyu, Q., Wang, K., . . . Cheng, W. (2021). Orientation-Dependent Soft Plasmonics of Gold Nanobipyramid Plasmene Nanosheets. Nano Letters, 21(1), 389-396. doi:10.1021/acs.nanolett.0c03779
37. Fu, R., Shi, Q. *, Yong, Z., Griffith, J. C., Yap, L. W., & Cheng, W. (2021). Self-assembled Janus plasmene nanosheets as flexible 2D photocatalysts. Materials Horizons, 8(1), 259-266. doi:10.1039/d0mh01275k
36. Fu, R., Warnakula, T., Shi, Q., Yap, L. W., Dong, D., Liu, Y., . . . Cheng, W. (2020). Plasmene nanosheets as optical skin strain sensors. Nanoscale Horizons, 5(11), 1515-1523. doi:10.1039/d0nh00393j
35. Qiu, S., Zheng, C., Zhou, Q., Dong, D., Shi, Q., Garg, V., . . . Fu, J. (2020). Direct Imaging of Liquid-Nanoparticle Interfaces with Atom Probe Tomography. Journal of Physical Chemistry C, 124(35), 19389-19395. doi:10.1021/acs.jpcc.0c05504
34. Dervisevic, M., Shi, Q., Alba, M., Prieto-Simon, B., Cheng, W., & Voelcker, N. H. (2020). Enzyme-like electrocatalysis from 2D gold nanograss-nanocube assemblies. Journal of Colloid and Interface Science, 575, 24-34. doi:10.1016/j.jcis.2020.04.081
33. Wang, R., Zhai, Q., Zhao, Y., An, T., Gong, S., Guo, Z., . . . Cheng, W. (2020). Stretchable gold fiber-based wearable electrochemical sensor toward pH monitoring. Journal of Materials Chemistry B, 8(16), 3655-3660. doi:10.1039/c9tb02477h
32. Shi, Q., & Cheng, W. (2020). Free-Standing 2D Nanoassemblies. Advanced Functional Materials, 30(2). doi:10.1002/adfm.201902301
31. Dong, D., Fu, R., Shi, Q., & Cheng, W. (2019). Self-assembly and characterization of 2D plasmene nanosheets. Nature Protocols, 14(9), 2691-2706. doi:10.1038/s41596-019-0200-4
30. Shi, Q., Gómez, D. E., Dong, D., Sikdar, D., Fu, R., Liu, Y., . . . Cheng, W. (2019). Correction to: 2D Freestanding Janus Gold Nanocrystal Superlattices (Advanced Materials, (2019), 31, 28, (1900989), 10.1002/adma.201900989). Advanced Materials, 31(37). doi:10.1002/adma.201904636.
29. Zhang, Z., Yap, L. W., Dong, D., Shi, Q., Wang, Y., Cheng, W., & Han, X. (2019). Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. Chempluschem, 84(8), 1030. doi:10.1002/cplu.201900368
28. Zhang, Z., Yap, L. W., Dong, D., Shi, Q., Wang, Y., Cheng, W., & Han, X. (2019). Cat-Tail-Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. CHEMPLUSCHEM, 84(8), 1031-1038. doi:10.1002/cplu.201900043
27. Shi, Q., Gómez, D. E., Dong, D., Sikdar, D., Fu, R., Liu, Y., . . . Cheng, W. (2019). 2D Freestanding Janus Gold Nanocrystal Superlattices. Advanced Materials, 31(28). doi:10.1002/adma.201900989
26. Dong, D., Shi, Q., Sikdar, D., Zhao, Y., Liu, Y., Fu, R., . . . Cheng, W. (2019). Site-specific Ag coating on concave Au nanoarrows by controlling the surfactant concentration. Nanoscale Horizons, 4(4), 940-946. doi:10.1039/c8nh00431e
25. Liu, Y., Fan, B., Shi, Q., Dong, D., Gong, S., Zhu, B., . . . Cheng, W. (2019). Covalent-cross-linked plasmene nanosheets. ACS Nano, 13(6), 6760-6769. doi:10.1021/acsnano.9b01343
24. Yap, L. W., Shi, Q., Gong, S., Wang, Y., Chen, Y., Zhu, C., . . . Cheng, W. (2019). Bifunctional Fe 3 O 4 @AuNWs particle as wearable bending and strain sensor. Inorganic Chemistry Communications, 104, 98-104. doi:10.1016/j.inoche.2019.03.020
23. Shi, Q., Di, W., Dong, D., Yap, L. W., Li, L., Zang, D., & Cheng, W. (2019). A General Approach to Free-Standing Nanoassemblies via Acoustic Levitation Self-Assembly. ACS Nano, 13(5), 5243-5250. doi:10.1021/acsnano.8b09628
22. Zhao, Y., Zhai, Q., Dong, D., An, T., Gong, S., Shi, Q., & Cheng, W. (2019). Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Analytical Chemistry, 91(10), 6569-6576. doi:10.1021/acs.analchem.9b00152
21. Si, K. J., Dong, D., Shi, Q., Zhu, W., Premaratne, M., & Cheng, W. (2019). Ultrathin Fresnel lens based on plasmene nanosheets. Materials Today, 23, 9-15. doi:10.1016/j.mattod.2018.06.006
20. Shi, Q., Connell, T. U., Xiao, Q., Chesman, A. S. R., Cheng, W., Roberts, A., . . . Gómez, D. E. (2019). Plasmene Metasurface Absorbers: Electromagnetic Hot Spots and Hot Carriers. ACS Photonics, 6(2), 314-321. doi:10.1021/acsphotonics.8b01539
19. Gong, S., Wang, Y., Yap, L. W., Ling, Y., Zhao, Y., Dong, D., . . . Cheng, W. (2018). A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches. Nanoscale Horizons, 3(6), 640-647. doi:10.1039/c8nh00125a
18. Wang, Y., Gong, S., Dong, D., Zhao, Y., Yap, L. W., Shi, Q., . . . Cheng, W. (2018). Self-assembled gold nanorime mesh conductors for invisible stretchable supercapacitors. Nanoscale, 10(34), 15948-15955. doi:10.1039/c8nr04256j
17. Shi, Q., Sikdar, D., Fu, R., Si, K. J., Dong, D., Liu, Y., . . . Cheng, W. (2018). 2D Binary Plasmonic Nanoassemblies with Semiconductor n/p-Doping-Like Properties. Advanced Materials, 30(26). doi:10.1002/adma.201801118
16. Dong, D., Yap, L. W., Smilgies, D. M., Si, K. J., Shi, Q., & Cheng, W. (2018). Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: Self-assembly, characterization and immunosensing applications. Nanoscale, 10(11), 5065-5071. doi:10.1039/c7nr09443d
15. Shi, Q., Dong, D., Si, K. J., Sikdar, D., Yap, L. W., Premaratne, M., & Cheng, W. (2018). Shape Transformation of Constituent Building Blocks within Self-Assembled Nanosheets and Nano-origami. ACS Nano, 12(2), 1014-1022. doi:10.1021/acsnano.7b08334
14. Si, K. J., Chen, Y., Shi, Q., & Cheng, W. (2018). Nanoparticle Superlattices: The Roles of Soft Ligands. Advanced Science, 5(1). doi:10.1002/advs.201700179
13. Liu, Y., Dai, X., Mallawaarachchi, S., Hapuarachchi, H., Shi, Q., Dong, D., . . . Cheng, W. (2017). Poly(: N -isopropylacrylamide) capped plasmonic nanoparticles as resonance intensity-based temperature sensors with linear correlation. Journal of Materials Chemistry C, 5(42), 10926-10932. doi:10.1039/c7tc04051b
12. Gong, S., Zhao, Y., Yap, L. W., Shi, Q., Wang, Y., Bay, J. A. P. B., . . . Cheng, W. (2016). Fabrication of Highly Transparent and Flexible NanoMesh Electrode via Self-assembly of Ultrathin Gold Nanowires. Advanced Electronic Materials, 2(7). doi:10.1002/aelm.201600121
11. Gong, S., Zhao, Y., Shi, Q., Wang, Y., Yap, L. W., & Cheng, W. (2016). Self-assembled Ultrathin Gold Nanowires as Highly Transparent, Conductive and Stretchable Supercapacitor. Electroanalysis, 28(6), 1298-1304. doi:10.1002/elan.201600081
10. Shi, Q., Si, K. J., Sikdar, D., Yap, L. W., Premaratne, M., & Cheng, W. (2016). Two-dimensional bipyramid plasmonic nanoparticle liquid crystalline superstructure with four distinct orientational packing orders. ACS Nano, 10(1), 967-976. doi:10.1021/acsnano.5b06206
9. Si, K. J., Sikdar, D., Yap, L. W., Foo, J. K. K., Guo, P., Shi, Q., . . . Cheng, W. (2015). Dual-Coded Plasmene Nanosheets as Next-Generation Anticounterfeit Security Labels. Advanced Optical Materials, 3(12), 1710-1717. doi:10.1002/adom.201500335
8. Gong, S., Lai, D. T. H., Wang, Y., Yap, L. W., Si, K. J., Shi, Q., . . . Cheng, W. (2015). Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials and Interfaces, 7(35), 19700-19708. doi:10.1021/acsami.5b05001
7. Si, K. J., Guo, P., Shi, Q., & Cheng, W. (2015). Self-assembled nanocube-based plasmene nanosheets as soft surface-enhanced raman scattering substrates toward direct quantitative drug identification on surfaces. Analytical Chemistry, 87(10), 5263-5269. doi:10.1021/acs.analchem.5b00328
6. Y Wu, Q Shi, Y Li, Z Lai, H Yu, H Wang, F Peng. (2015). Nitrogen-doped graphene-supported cobalt carbonitride@ oxide core–shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction. J. Mater. Chem. A, 3, 1142-1151.
5. Z Liu, Q Shi, R Zhang, Q Wang, G Kang, F Peng. (2014). Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells. 268, 171-175.
4. Q. Shi, F. Peng, S. Liao, H. Wang, H. Yu, Z. Liu, B. Zhang, D. Su. (2013). Sulfur and nitrogen co-doped carbon nanotubes for enhancing electrochemical oxygen reduction activity in acidic and alkaline media. J. Mater. Chem. A, 1, 14853-14857.
3. Z Liu, F Peng, H Wang, H Yu, C Chen, Q Shi. (2012). Design of Pt catalyst with high electrocatalytic activity and well tolerance to methanol for oxygen reduction in acidic medium. 29, 11-14.
2. Z Liu, Q Shi, F Peng, H Wang, H Yu, J Li, X Wei. (2012). Enhanced methanol oxidation activity of Pt catalyst supported on the phosphorus-doped multiwalled carbon nanotubes in alkaline medium. 22, 34-38.
1. IZ Liu, Q Shi, F Peng, H Wang, R Zhang, H Yu. (2012). Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells. 16, 73-76.